Student Performance Prediction via Attention-Based Multi-Layer Long-Short Term Memory

نویسندگان

چکیده

Online education has attracted a large number of students in recent years, because it breaks through the limitations time and space makes high-quality at your fingertips. The method predicting student performance is to analyze predict student’s final by collecting demographic data such as gender, age, highest level, clickstream generated when interact with VLE different types specific courses, which are widely used online platforms. This article proposes model via Attention-based Multi-layer LSTM (AML), combines for comprehensive analysis. We hope that we can obtain higher prediction accuracy soon possible provide timely intervention. results show proposed improve 0.52% - 0.85% F1 score 0.89% 2.30% on four-class classification task well 0.15% 0.97% 0.21% 2.77% binary from week 5 25.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term associative learning predicts verbal short-term memory performance

Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on p...

متن کامل

Short- and long-term academic predictors of medical student performance

The relationship between entry qualifications and performance throughout the medical course was studied in individual cohorts of students admitted in the years 1977 to 1981. A modest but significant relationship with overall initial qualifications was found throughout the course. Students without biology showed a marked disadvantage in the first year but the effect did not persist. There were q...

متن کامل

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Long Short-term Memory

Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden s...

متن کامل

Long Short-Term Memory

Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of computer and communications

سال: 2021

ISSN: ['2327-5219', '2327-5227']

DOI: https://doi.org/10.4236/jcc.2021.98005